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DERIVATION AND APPLICATION OF DUAL-SURFACE
INTEGRAL EQUATIONS FOR THREE-

DIMENSIONAL, MULTI-WAVELENGTH PERFECT
CONDUCTORS

I. INTRODUCTION

The numerical solution of dual-surface integral equations applied to three-

dimensional (3-D), multi-wavelength, perfectly conducting bodies can be obtained with

readily available computers in a central processing unit (CPU) time proportional to

approximately (s/L)4 in (s/4) using the conjugate gradient method and direct access

memory files 3 (s is the dimension of the body and X the wavelength). Specifically, for

a given incident fieid and aspect angle, the induced cuifent and far field over 4n

steradians of a perfectly conducting cube 5 wavelengths on a side is computed 4 in about

(Received for Publication 5 Oct 1989)
I Tobin, A.R., Yaghjian, A.D., and Bell, M.M. (1987) Surface integral equations for
multi-wavelength, arbitrarily shaped, perfectly conducting bodies, Digest of the
National Radio Science Meeting (URSI), Boulder, CO, p. 9.
2 Sarkar, T.K. and Arvas, E. (1985) On a class of finite step iterative methods
(conjugate directions) for the solution of an operator equation arising in
electromagnetics, IEEE Trans. Antennas and Propagat. AP-33: 1058-1066.

Woodworth, M.B. (1988) Large Matrix Solution Techniques Applied to an Electro-
magnetic Scattering Problem. RADC-TR-88-268. ADA206917

4 Cote, M.G., Woodworth, M.B., and Yaghjian, A.D. (1988) Scattering from the perfectly
conducting cube, IEEE Trans. Antennas Propagat. AP-36: 1321-1329.



1.5 hours of CPU time [utilizing two-fold symmetry of the cube: see Eq. (34)] on a VAX

8650 computer with a "32-bit Linpack benchmark performance rating" of 1.3 megaflops.5

The same computer would take about II hours of CPU time for this 5X cube if the matrix

of the dual-surface integral equation were solved using, instead of the conjugate

gradient method, Gaussian elimination, which requires a computer time proportional to

approximately (s/k)6. [Gaussian elimination CPU time with direct access files can be

c3timated from Eq. (30) with N = 75(s/X)2.j If the two-fold symmetry of the cube were

not used to reduce the number of unknowns by a factor of 4 these CPU times using the

conjugate gradient and Gaussian elimination methods would increase by factors of

approximately 22 and 64, respectively, that is, from 1.5 and 11 hours to about 33 and

700 hours (30 days) of CPU time for a 5X scatterer. This latter CPU time of 30 days

confirms that scattering or radiation from arbitrarily shaped 5%, 3-D bodies cannot be

determined in a reasonable amount of computer time, using conventional Gaussian

elimination, by a computer with a Linpack performance rating on the order of one

megaflop. It becomes necessary to use faster matrix solution schemes, such as the

conjugate gradient iterative method, when the integral equations are applied to

progressively larger bodies, regardless of the speed of the computer.

Herein, we derive the dual-surface electric and magnetic-field integral equations for

3-D perfectly electrically conducting bodies, prove that they produce a unique solution

at all real frequencies, and demonstrate their applicability to multi-wavelength bodies

by solving the dual-surface magnetic-field integral equation for a rectangular scatterer

using the method of conjugate gradients.

Magnetic-field surface integral equations for perfect conductors appeared in the

literature as early as 19316 , and both electric and magnetic-field surface integral

equations were derived in Maue's definitive 1949 Zeitschrift Fur Physik paper. 7

However, only in the last ten years or so have digital computers become fast enough to

solve these surface integral equations for arbitrarily shaped, 3-D, multi-wavelength

bodies.

I
5 Dongarra, J., Martin, J.L., and Worlton, J. (1987) Computer benchmarking: paths and
pitfalls, IEEE Spectrum, 24: 38-43.
6 Murray, F.H. (1931) Conductors in an electromagnetic field, Ant. J. Math., 53:
275-288.
7 Maue, A.W. (1949) On the formulation of a general scattering problem by means of an
integral equation, Z. Phys., 126(7/9): 601-618.
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Unfortunately, as Murray and Maue noted, the original electric and magnetic-field

integral equations (EFIE and MFIE) fail to produce a unique exterior solution at

frequencies equal to the resonant frequencies of the corresponding interior cavity.

Since the density of cavity resonant frequencies increases rapidly beyond the fist
resonant frequency, which occurs wheii the dimension of a full-bodied 3-D scatterer

equals about one wavelength, the numerical solution of 3-D, multi-wavelength bodies is

severely hanpered by these spurious resonances.

In Reference 8 it was proven that the original integral equations allow spurious

solutions at the cavity resonant frequencies because at (and only at) these frequencies

the MFIE does not restrict the tangential electric field to zero on the surface of the

scatterer and the EFIE does not restrict the tangential magnetic field to K x n on the

Asurface of the scatterer. (K is the surface current and n the outward unit normal to the

scatterer. Interestingly, the MFIE result was also proven m the early paper by

Murray.") Among the alternatives that have been proposed for eliminating the spurious

solutions from the original integral equations, the combined-field' 10, or
combined-source1' 13, " integral equation, and the augmented electric or magnetic-field

8 Yaghjian, A.D. (1981) Augmented electric md magnetic-field integral equations, Radio

Science, 16: 987-1001.
9 Mitzner, K.M. (1968) Numerical solution of the exterior scattering problem at
eigen-frequencies of the interior problem, Digest of Fall URSi Meeting, Boston, MA,
p. 75.
10 Poggio, A.J., and Miller, E.K. (1973) Integral equation solutions of three-dimensional

scattering problems, in Computer Techniques for Electromagnetics, edited by R. Mittra,
159-264, Pergamon, New York.

1i Mautz, J.R. and Harrington, R.F. (1978) H-field, E-field, and combined-field

solutions for conducting bodies of revolution, Arch. Elektron. Ubertragungstech.
(Electron. Cominun.), 32(4): 157-164.
12 Panic, 1.0. (1965) On the solvability of exterior boundary-value problems for the wave

equation and for a system of Maxwell's equations, Uspehi Mat. Nauk, 20(1):
"I 226.

31 Brakhage, H. and Werner, P. (1965) Uber da. Dirichletsche Aussenraumproblem fur die

Helmholtzsche Schwingungsgleichung, Arch. Math., 16: 325-329.
14 Mautz, J.R. and Harrington, R.F. (1979) A combined-source solution for radiation and
scattering from a perfectly conducting body, IEEE Trans. Antennas and Propagation,
AP-27: 445-454.



integral equation8 appear the more generally applicable and effective in numerical

practice. However, for arbitrarily shaped, 3-D, multi-wavelength bodies, the combined

and augmented integral equations also have their drawbacks. The combined-field and

combined-source equations involve the operators of both the magnetic-field equation and

the electric-field equation, which takes considerably more programming ingenuity and

computer time than the original MFIE to achieve the same accuracy of solution. The

augmented MFIE involves only the magnetic-field operator, but the augmented integral

equations require a special procedure to eliminate all the spurious solutions from

bodies of revolution.

Thus, we begin the integral equation solution for arbitrarily shaped, 3-D,

multi-wavelength perfect conductors with the derivation of dual-surface electric and

magnetic-field integral equations that differ only slightly from the original electric

and magnetic-field integral equations, yet eliminate all spurious solutions. The

dual-surface magnetic-field integral equation was given in Reference 1, but the

derivation and proof of uniqueness of the dual-surface magnetic and electric-field
integral equations have not appeared previously. Recently, Toyoda et al. presented an
"extended integral equation formulation" for 2-D scatterers that used additional

surfaces near the surface of the scatterer. Their formulation for perfect conductors

applies an extended integral equation to an interior surface and requires the interior

surface to move with frequency to maintain uniqueness of solution. The derivation of

the dual-surface magnetic and electric-field integral equations, (5a) and (Sb), in the

following section requires the introduction of a second surface interior and parallel to

the surface of the scatterer, but the resulting integral equations have a unique

solution at all real frequencies and are applied to the single surface of the scatterer.

2. DERIVATION OF DUAL-SURFACE INTEGRAL EQUATIONS

A time harmonic [exp (-iw0t), o real and > 01 electromagnetic field (E. inc, H.in

incident in free space upon the surface S of a perfectly electrically conducting

15 Toyoda, I., Matsuhara, M., and Kumagai, N. (1988) Extended integral equation
formulation for scattering problems from a cylindrical scatterer, IEEE Trans.
Antennas and Propagat. 36: 1580-1586.
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scatterer excites a surface current K. (Let S be coincident with the surface current

K.) Since the total field inside the scatterer is zero, the scattered fields equal the

negative of the incident fields inside S, and one can write the "interior" or "extended"

integral equations,

SHinc(r) =f K(r') x V1 xv(rr')dS' (Ia)

S

(r inside S)

Ein (r k 21y "' (I b)
o S

where k(=o/c=2nrA) is the free-space propagation constant, F.0is the pennittivity of free

space, and V (r,r') is the free-space Green's function exp (ikl r-r'!)/4n r-r'l.

Let the observation point r in Eqs. (la) and (lb) approach the surface S of the

conductor from inside S, and convert the surface integrations in Eq. (1) to circular

principal-value integrations using the following formula (derived by a straightforward

integration near the singularity of xV 8):

A

fV'xW (is, = fV' dS' - n2 (2)

S(r 'S)

where f denotes the principal-value surface integration evaluated by excluding the

S
singular point, r'= r. of the integrand by a limiting circular "principal area" centered

on r, and n is the outward unit normal from the surface S at r. Eqs. (1) then
S8

yield the augmented magnetic anu electric-field surface integral equations for the

exterior scattering problem:

5



I A-H inc(r) 2 n x K + K x V' IdS'InS (3a)
S

(r on S)

E. (r) + iKEEInc~ 2 1o W S 1

Taking n cross these overdetenmined Eqs. (3) reduces them to the original even

determined MFIE and EFIE,

A - A -(an x Hinc 2 -K - n x K x V' dS' (4a)

S
(r on S)

A
A n 2
n xE. -- x. [kKV-CF. I' (4b)

As mentioned in the Introduction, the original integral Eqs. (4) are plagued by

spurious solutions for K at the resonant frequencies of the cavity formed by the surface

S. Although either of the augmented Eqs. (3) eliminate the spurious solutions for most

shapes, they must both be used, in general, to eliminate all the spurious resonances

when the surface S is a body of revolution. The combined-field integral equation9' .J
Aeliminates the spurious resonances by adding Eq. (4a) to -CC0 n crossed into Eq. (4b), and

uniqueness of solution of the combined-source equation 12
, 11, 14 follows from its operator

being the adjoint of the combined-field operator 11 14. (The real constant (x° is often

chosen equal to the free-space wave admittance.)

To derive the dual-surface integral equations, return to the extended integral

equations (1). The current K(r) in Eq. (Ia) or (lh) is uniquely determined at every

6



frequency if Eq. (la) or (lh) is satisfied for all r inside S' 6. Conceivably, one could

determine the current K by solving namerically the vastly overdetermined set of extended

integral equations that results from Eq. (la) or (lb) applied to points r separated by a

small fraction of a wavelength throughout the volume enclosed by S. Or one could

supplentlent the surface integral equations (4) with the extended integral equations (1)

applied at selected points r within S. 17 ' 19. The former approach introduces a

prohibitive number of equations for multi-wavelength bodies, and in applying the latter

approach one has no convenient, reliable criterion for selecting the number and position

of the interior points at which the extended integral equations (la) and (lb)must be

satisfied to assure Eqs. (4,i) and (4b) produce the correct unique current K at all

frequencies. (The modified Green's finction method2, ...22 for eliminating the spurious

solutions from the original surface integral equations (4) suffers from a similar

uncertainty in choosing the proper number and origin of eigenfunctions in the

representation of the modified Green's function. 23)

Waterman, P.C. (1965) Matrix formulation of electromagnetic scattering, Proc. IEEE,
53: 805-812.
17 Schenk, H.A. (1968) Improved integral formulation for acoustic radiaion problems, J.
Acoust. Soc. Am., 44: 41-58.
1 Klein. C.A. and Mittra, R. (1975) An application of the "condition number" concept to

the solution of scattering problems in the presence of the interior resonant
frequencies. IEEE Trans. Antennas and Prwpagat., AP-23: 431-435.
1' Morita, N. (1979) Resonant solutions involved in the integral equation approach to

scattering from conducting and dielectric cylinders, IEEE Trans Antennas and
Propagat., %P-27: 869-871.
20 Roach, G.F. (1967) On the approximate solution of elliptic, self adjoint boundary
value problems, Arch. Ration. Mech. Anal., 27(3): 243-254; (1970) Approximate Green's
functions and the solution of related integral equations, toc. cit., 36(1): 79-88.
2 Ursell. F. (1973) On the exterior problems of acoustics, Proc. Camb. Phil. Soc.,

74(1): 117-125.
22 Jones, D.S. (1974) Integral equations for the exterior acoustic problem, Q.I. Mech.

Appl. Math.- 27(1): 129-142.
2 Brandt, D.W., Eftiiniu, C., and Huddleston, P.L. (1985) Electromagnetic scattering by
closed conducting bodies: tihe problem of internal resonances, lEE Conference Publication
248, 434-437, ICAP 1985.
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If, however, the extended integral equations (la) and (ib) are incorporated at points

r on a surface S8 parallel to, and a small distance 8 > 0 inside the current surface S
Aof the perfect conductor (see Figure I1), by addIing xcn cross Eqs. ( I a) and ( I b) at these

points to the original MFIE Eq. (4a) and EFIE Eq. (4b), respectively, one obtains the

'dual-surface" magnetic and electric-field integral equations:

(5a)

A -- I A--nxH0(r) 2 K(r) - n V'MK)I T 0(rr')dS'

S

(r on S)

A
A -n r 2n x E (r) - x f [k KWV -W (VK)VWoldS'

0 S

(5b)

where E 0, H 0and yoare defined as

0A

Eo r inc (r cEinc(r 8)6a

WO (r,r') =_ (r,r') + a~ xV(r n 6, r') (6c)

8



I _S

Figure 1. Geometry of a Perfect C iuctor with Current
Surface S and Parallel surface S 8.

These dual-surface magnetic and electric-field integral equations, (5a) and (5b), although

identical in forem and comparable in complexity to the original MFIE (4a) and EFIE (4b),

provide a unique solution for K, at all real frequencies as long as the constant cc is

imaginary and the positive real constant 5 is less than about X/2. (In the numerical

solutions of Eq. (5a) described in Section 4 below we choose cc equal to i and 5 equal to

the smal1er of about ?,.4 or 1/4 the breadth of the scatterer along the normnal at the

point r. Using (x's of ±.5i, ±i, and ±1.5i. and varying 5 from k/8 to 3A/8 did not

significantly change the computed solution, "although the number of iterations required

by the conjugate gradient method to attain the samne value of normnalized residual error

varied somnewhat with x ad 6.)

9



3. UNIQUENESS OF SOLUTION OF THE DUAL-SURFACE INTEGRAL
EQUATIONS

Uniqueness of solution for the dual-surface magnetic- and electric-field integral

equations can be proven by considering the fields radiated by the solution currents.

Concentrating on the dual-surface MFIE first, let H s(r) be the magnetic field radiated

by the solution K to Eq. (5a); specifically

H =(r) j K(r) x V'W(r,r')dS' (r not in S). (7)

S

If K were the correct unique current for this scattering problem, Hs(r) in Eq. (7) would

be the correct scattered field for all r not in the surface current. However, since we

do not know at this point that the solution K to Eq. (5a) is the correct unique

solution, Eq. (7) simply defines an unknown magnetic field Hs(r).

Taking the curl of Eq. (7) twice reveals that this unknown magnetic field satisfies

the homogeneous vector wave equation for all r not in the surface current K, that is,

V x V x H -k 2H = 0 (r not in S). (8)

Letting r approach S in Eq. (7) from the inside of S, and using the principal-value

formula [Eq. (2)1, we obtain

H (r-) K(r) + f K(r')xV'W(r,r') dS' (r on S), (9)Hsr- 2 Ky

S

where r- in H s(r-) indicates the field evaluated just inside the surface current. Since

Eq. (7) holds for all r inside S, we can express Hs on the parallel surface S8 as

10



irs-S( ) = f K(r'xV'yt(r - n. r')dS' (r on S). (10)
S

A

Add Eq. (9) to Eq. (10) multiplied by (x and take n cross the result, to get

x [(Hs(r-) + ((Hs(r -- 6) = K(r) + x f K(r') x V'NJ(r,r')dS'. (11)
S tr oils)

Comparing Eq. (i1) with Eq. (5a), which K must also satisfy, reveals

x [(-s(r-) + Hin(r)) + r (H(r ) + Hinc(r-n)) = 0 (r on S). (12)

The incident magnetic field also satisfies the vector wave equation

V x V xH. ~ kH. =0 . (13)
inc inc (3

Thus, we can add Eq. (8, to Eq. (13), and rewrite Eq. (12) to arrive at the interior

boundary value problem,

V x V x H - k H = 0 (r inside S) (14a)

x H + H(r - 61)] = 0 (r --S from inside), (14b)

where the total magnetic field H(r) is given by the sum of Hinc(r) and H.(r).

The final steps of the uniqueness proof consist in showing that the boundary value

problem defined by Eq. (14) has only the trivial solution, H(r) = 0, for the total field

throughout the volume enclosed by the surface S, provided the constant (. is imaginary

II



and the positive real constant 5 is smaller than about X/2. To show this, rewrite the

boundary condition of Eq. (14b) explicitly for the magnetic field tangent to the

surface S

Ht(r) + n H(r - 5n) = 0 (r-S from inside). (15)

The tangential magnetic fields, H t(r) and H (r - 5), are complex numbers that can be

expressed in the form of a magnitude and phase

(16a)

Ht(r) = Ht(r) Ie(r)

(r--S from inside)

H(r- = JHt(r) + AH I-(r,&)] [e)+ (16b)

where AHt and AO are the differences between the magnitudes and phases of H t(r) and

Ht(r - 5h. Insert H(r) and Ht(r - &n) from Eq. (16) into Eq. (15) to get

jHt, + a fIHtI + AHt) Mcos AO + i sin AO) = 0. (17)

Because jHtj, AHt, and AO are real numbers, if we let the constant cc be an imaginary

number(ia.), the real and imaginary parts of Eq. (17) equate separately to give

H tI- oci(IHtI + AHtI sin AO = 008a)

ai (HtI + AHt} cos AO = 0 (18b)

12



o*

For small 6, AO will be smal - certainly not ± 90 - and thus Eqs. (18) imply

,H = 0 and AH = 0, or

H tr) = 0 (1 9a)

(r -,"S from inside)

Ht(r - 6^) = 0. (19b)

In other words, when the constant (x is chosen imaginary and 8 is not large, the two

separated tangential fields in the boundary condition of Eq. (14b) are each zero. That

is, the tangential magnetic field on both the surface S and S5 are zero.

The boundary condition of Eq. (19a) restricts the nonzero solutions of Eq. (14a) to

the resonant modes of the cavity fonned by a perfectly magnetically conducting surface

S. These modes, which exist for a given cavity only at discrete frequencies, form

standing waves within the cavity with magnetic and electric fields that can be chosen

real and imaginary, respectively. 24  In particular, the tangential magnetic field near

the surface S can be expressed approximately as

Ht(r s , r n A(r , r ) sin yrn  (20a)

where (r s.r ) are the coordinates tangent and nonnal to the surface S, y is a positive

real propagation constant with a value equal to or less than the propagation constant k

of free space, and the uniplitude A(r s, rn1 ) varies with r nslowly compared to the

variation of sin yr (With respect to the r direction the cavity can be considered a

shorted waveguide with varying cross section.) If we let r 0 on the surface S, the

*The one exception would be if there were a zero of H t near the surface S or S8 . In

that case we can expand the boundary condition of Eq. 15 along the normal direction rn
in a Taylor series about the zero to show that MH t/arn must also vanish at the zero of Ht

for imaginary a and small 5. Since Eq. (20a) shows that no cavity can support modes
with both the tangential field and its normal derivative zero on its surface, the
solution to Eq. (14) is unique in this exceptional case as well.

24 Borgnis, F.E. and Papas, C.H. (1958) Electromagnetic waveguides and resonators, EncYclo-

pedia of PhYsics, 16 Ed. S. Flugge, Springer-Verlag, Berlin.

13



boundary condition of Eq. (19a) is satisfied by (20a). The boundary condition of

Eq. (19b) applied to (20a) requires that

y8 = mnt (20b)

for m equal to a positive integer. (We assume that there will be some portion of the

surface S where A will not be zero. For if the tangential magnetic field were zero

throughout the volume between S and S5, the fields would be zero throughout the cavity.

Also, if degenerate modes exist, we assume their Ht fields will be linearly independent

over the surface S6 and this Eq. (20b) will still hold. Because the maximum value of y

is k = 27A, the condition of Eq. (20b) cannot be satisfied for

0 < 8 < A/2 . (21)

The approximate sign is included in the right side of the inequality in (21) because

(20a) is an approximate expression for the standing wave field near the surface. If we

look specifically at the resonant cavity formed by shorting the ends of a waveguide of

arbitrary uniform cross section, we find (20a) applies exactly with A equal to a

constant. Thus, the inequality of (21) holds exactly for a shorted waveguide cavity.

For a spherical cavity the fields vary radially as spherical Bessel functions of the

first kind. For asymptotically large spheres, (20a) again holds exactly, and for all

spheres large enough to sustain resonant modes, (20a) holds to a good approximation near

the surface - thereby confirming the approximate inequality [Eq. (21)] for spherical

cavities.

In summary, the only solution to Eq. (14) for x imaginary and 0 < 5 < X/2 is the

trivial solution, H(r) = H inc (r) + H (r) = 0 throughout the volume enclosed by S. Since

E =-V x H/iox o, the electric field E(r) = E.(r) + E (r) within this volume is also

identically zero. And, as mentioned in Section 2, it is a simple matter to prove 6that

the current that produces the negative of the incident electromagnetic fields throughout

the volume enclosed by S is the correct unique current for the exterior scattering

problem. (Namely, E and H equaling zero inside S implies n × E = 0 and n x H = K for

the fields just outside S -- the conditions required for uniqueness of solution of the
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exterior problem'5.) Since this unique solution has heen lerived from the solution

current of Fq. (5a), the dual-,urtace magnetic-field integral equation (Sa) has a unique

solut ioll.

Beginning with the solution current of the dual-surface electric-field integral

equation 5b). and defining the electric field

I) - i k Kt4i - (V,' K)V" (IS' ( r not in S) (22)
0 

--

initiall, instead of the magnetic field Eq. (7), we obtained the smne inequality (21) as

the sufficient condition for the uniqueness of solution of the dual-surface

electric-field integral equation (51y.

In numerical plactice, we suggest choosing u equal to i to weight the fields on S and

S6 equally in the boundary condition JEq. ( l4btl by an imagmary constant. Likewise, we

suggest choosing , equal to about ,./4, to keep the surface S6 about an equal distance

between the two critical values. 6 = 0 and V/2 The dual-surface integral equations

allow spurious solutions at 6 = () where they reduce to the original integral equations

(4). wud at 6 equal to or greater tham about K/2 where the dual-surface boundary

condition [Eq. ( l1b)j no longer insures uniqueness of solution. When the breadth of the

scatterer along the normal is less thani X. one can choose 8 equal to 1/4 the breadth

iistead of X/4.

A numerical demonstration of the elimination of the spurious resonances by the

dual -urface magnetic-field integral equation is given in Figures 2 and 3. Figure 2

plots the total (integrated) radar cross section versus the perimeter of a perfectly

conducting cube of side length s as computed using the conventional magnetic field

integral equation (4a). The spurious resonances begin to contuninate the MFIE solution

in Figure 2 near the first resonance of the cube at 4s/X = 2.8 an( continue to distorl

the solution at an increasing rate commensurate with the increasing density of resonant

frequencies. Figure 3 shows clearly that the dual-s urface magnetic-field integral

equation (5a) eliminates the spurious resonaCes from the NIFIf solution in Figure 2.

2 Muller,. (7. 1969) F utdautons of the Muthmciattil "lTcorv of Ele'tromoairic'tc Wvc..
Springer-Verlag. New Yok, Theorem 71
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Figure 2. Total Radar Cross Section Versus Perimeter of a
Perfectly Conducting Cube as Computed with the Conventional
Magnetic-Field Integral Equation (4a).
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Figure 3. Total Radar Cross Section Versus Perimeter of a
Perfectly Conducting Cube as Computed with the Dual-Surface
Magnetic-Field Integral Equation (5a).
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4. NUMERICAL SOLUTION TO THE DUAL-SURFACE MAGNETIC-
FIELD INTEGRAL EQUATION BY THE CONJUGATE
GRADIENT METHOD

The similarity of the dual-surface integral equations (5) to the original integral

equations (4) allows them to be solved numerically by a minor modification to existing

MFIE and EFIE computer programs. One merely adds the values of the incident field and

free-space Green's function (each multiplied by c) at the points r - 5n to their

respective values at r used in the computer programs of the original integral equations.

In particular, we consider - straightforward numerical solution to the dual-surface

magnetic-field integral equation (5a) for scattering from the perfect conductor S.
Divide the surface S of the scatterer into M patches, assume the current is a

constant vector over each patch, approximate the value of the Green's function Vy 0oover

each patch by a constant vector equal to the value of V'W{o at the center of the patch,

and apply the integral equation (5a) at the center of each patch. In short, approximate

the integral in Eq. (5a) by the summation

M
A I A r'
ni x 14o(ri) = K(r i n. x K(r)x V'xV o(r ,r )AS (23)

) i = 1,2 .. M

where AS. is the area of each patch, and the self-patch (i = j) in the summation isJ
taken as the "principal area" excluded by the principal-value integral in Eq. (5a). (In

the language of the method of moments, we have used pulsL, basis functions and delta

testing functions.)

For each patch there are two complex unknown components of surface current K and

two complex scalar equations. Thus, Eq. (23) represents a simultaneous set of 2M

linear complex equations for 2M complex unknowns, and can be written in tensor notation

as

ai x. = bi, i = 1,2 ... N = 2M, (24)
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where the x. are the complex unknown components of surface current, the a.. are the

elements of the given coefficient matrix, and the bi are the given incident-field

values. Summation from I to N over the repeated index j in Eq. (24) is, of course,

implied.

In solving Eq. (24) for three-dHiensional bodies on readily available computers, one

quickly encounters the problem of limited central or virtual memory and excessive

computer time as the size of the body is increased beyond a wavelength. For example,

we have found that the dual-surface MFIE requires a minimum of about 25 patches per

square wavelength* to achieve reasonable accuracy in the computed currents and far

fields. A cube of side length s thus requires about M = 150 (s/x) 2 patches or

N 2M 300(s/X)" (25)

complex unknowns, and a memory of

W = 2N 2  (26)

real words W to store the complex N x N matrix with elements a... On our VAX 8650IJ
with an allotted virtual memory of one million words, the solution of Eq. (24) is

limited to cubes less than about 1.5 wavelengths on a side. (Paging time became

excessive as the amount of virtual memory used approached a million words; and allotting

more virtual memory to the computer was not as efficient an alternative as using direct

access files for increasing computer storage capacity. 26 ) Moreover, we found that

* This requirement of about 5 linear divisions per wavelength to get reasonable
accuracy is not surprising if one considers that the current and the Green's function in
the surface integral equation varies along the surface of the scatterer with a maximum
spatial frequency equal to about one cycle per wavelength. This means that the product
of the current and Green's function in the integral of the integral equation has a
maximum spatial frequency of about 2 cycles per wavelength. The sampling theorem
would then require about 4 samples per linear wavelength to act.urately approximate the
integral of the current times the Green's function by a summation.

26 Perry, T.S. and Zorpette, G. (1989) Supercomputer experts predict expansive growth,

IEEE Spectrum, 26: 26-33.
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solving Eq. (24) using Gaussian elimination on this computer with a 32-bit Linpack

performance rating 5 of 1.3 megaflops took a CPU time I'IE given approximately (for large

N) by

TOE = 2.2 x 10-7 N 3  (27)

minutes, which becomes prohibitive for cubes greater than about 2 wavelengths on a side.

Incorporating two-fold symmetry of the cube to reduce N by a factor of 4 still did not

allow us, in a reasonable computer time, to solve for scattering from cubes larger than

about 4 wavelengths on a side using Gaussian elimination on the available computer. The

fastest available computers (those with 32-bit Linpack performance ratings of about 100

megaflops) would take many hours of computer time to solve Eq. (24) using Gaussian

elimination for general 3-D scatterers larger than a few wavelengths across. Even with

massive vector parallelism it is difficult to conceive of digital computers extending

appreciably the formidable restriction on s/X presented by the (siX) 6 dependence of the
computer time in Eq. (27) for solving Eq. (24) using Gaussian elimination.

To extend the limits of computer storage and processing time on the available

mainframe, we made use of direct access memory files on disk and solved Eq. (24)

iteratively using the conjugate gradient method rather than Gaussian elimination. 3 A

direct access file was used to store the rows of the N x N complex matrix. The file

could be either opened, written to, or read from by a single Fortran command, and

increased our available memory from 1 million to 30 million words. (Of course, with

iterative solvers one can greatly reduce computer storage requirements by generating the

coefficient matrix during each iteration. However, this greatly increases the required

CPU time.)

The drawbacks of using direct access files are the necessary additional computer

programming, the somewhat greater CPU time, and possibly a large increase in

input/output time. Use of direct access files roughly doubles the CPU time required to

solve Eq. (24) using the conjugate gradient method. Gaussian elimination CPU times are

either roughly doubled or multiplied by a factor of about 10, when using direct access

files, depending on whether or not a round-off error check is included in the Gaussian

elimination algorithm. (We shall discuss this later in conjunction with Tables I

and 2.) The extra input/output time associated with the direct access files may

dominate computer turn-around time on our computer system when the matrix is solved

using the conjugate gradient method. Meaningful input/output times are elusive,
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llo\ ever, onl central comlputers since they dlependI so strongly onl the particular direct
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maIgnet ic-tield integrllt equaion (5a aipplied( to 3 -D 1Ilit i-wavelength bodies. It
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offers what seems at present [19431 the best hope for the systematic inversion

[solution] of large matrices."

Table I compares the number of major complex operations required to solve large

matrices by means of Gaussian elimination and the conjugate gradient method, when using

direct access memory files. Table 2 shows the associated CPU times required by our

32-bit, 1.3 megaflop Linpack-perfonnance-rated VAX 8650 computer.

liable 1. Number of Complex Operations Required for N x N
Matrix Solution Using Gaussian Elimination and the Conjugate
Gradient Method.

METHOD NUMBER OF OPERATIONS
Elements Elements

Multiply Add Subtract Do Loops Written Read If

Gaussian Elim. 2N3  0 IN 3  1N 3  1N3  3N3  IN3

(total) 3 3 3 2 2 3

Conjugate Grad. 2N2  2N2  0 2N2  0 2N2  0
(per iteration) I I I I I

Table 2. CPU Time Required for Complex Operations on Our 32-Bit,
1.3 Megaflop Linpack-Performance-Rated Computer.

OPERATION CPU Time (10-6 sec)

Complex Add 0.84
Complex Subtract 0.96
Complex Multiply 2.03
Complex Divide 13.09
If 15.09
Do Loop 0.67
Read per complex element (for 2.30
large N)
Write per complex element (for 2.41
large N)
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The CPU times for the complex op.erations in Table 2 can be inserted into Table 1 to

estimate the total CPU times, tGI- and t *, for this computer to solve Eq. 24 by Gaussian
GE CG

elimination and the conjugate gradient method. Specifically,

t = 1.93 x 10 N (28)

t = 1.95 x 10-- N-I (29)

minutes. where N is, as usual, the dimension of the complex matrix, and I is the number

of iterations needed for convergence using the conjugate gradient method. Comparing the

estimated CPU time [Eq. (28)1, for the solution to scattering from the cube by Gaussian

elimination, with the actual CPU run times (for the whole program) given approximately

by the formula (27). one finds that the estimated time [Eq. (28)] is about 90 percent of

the actual total CPU run times. Likewise, Eq. (29) gives an estimated CPU time for the

conjugate gradient method that is about 75 percent of the actual total CPU times for

scattering from large cubes (see 'Fable 3). The additional 10 percent and 25 percent CPU

tines are taken mainly by matrix-fill, complex conjugate, and miscellaneous overhead

operations.

Table 3. Number of Iterations (I) and Actual Total CPU Time Using the
Conjugate Gradient Method on our 32-Bit, 1.3 Megaflop Linpack-
Performance-Rated Computer.

CPU Time
s/K N Patches/k 2  I I/N (h:m:s)

0.75 48 28 35 .73 0:00:04
0.75 108 63 39 .36 0:00:12
0.75 192 112 42 .22 0:00:32
1.5 192 28 61 .32 0:00:45
1.5 432 63 62 .14 0:03:08
1.5 768 113 61 .08 0:10:47
2.4 432 25 83 .19 0:04:29
2.4 768 44 82 .11 0:13:53
2.4 1200 69 88 .07 0:35:15
3.0 768 28 90 .12 0:13:30
3.0 1200 44 92 .08 0:33:21
3.0 1728 63 93 .05 1:09:44
5.0 1728 23 118 .07 1:25:47
5.0 3468 46 119 .03 6:23:10
6.75 3468 2,5 141 .04 7:28:34
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The time estinates Eqs. (28) and (29) reveal that, for our typical computer, the

solution to Eq. (24) by the conjugate gradient method will take less computer thne than

Gaussian elimination if the number of required iterations I is less than N. This

conclusion holds whether or not direct access file. are used, because including the

write and read statements from Table I due to the use of direct access files roughly

doubles, as mentioned above, the computer times for both Gaussian elimination (with

round-off error check) and the conjugate gradient method.

It is important to note, however, that the logical IF operations and one half the

multiplication operations listed in Table I for Gaussian elimination are produced by the
round-off error check in our Gaussian elimination algorithm. If this round-off error

check is omitted, the revised Gaussian elinination CPU time t' estimated from Tables I
GE

and 2 is given by

tE 10 7 N 3  (30)

minutes, about one half the CPU times given by Eq. (27) or (28). Comparing Eq. (30)
with Eq. (29) shows that the conjugate gradient method becomes faster than Gaussian

elimination without the round-off error check when the number of iterations I is less

than about N/2.

If in addition to omitting the round-off error check from the Gaussian elimination

algorithm, all computations could be done in central memory without using direct access

files, the write and read operations would be eliminated from Table 1, and CPU times

[Eqs. (28) and (29)1, would be replaced by

t°0 =0.2 x 107 N 3
GE (31 )

t = .2x 10 7 NI1 (32)co

minutes. Comparison of Eqs. (31) and (32) reveals that, if all computations can be

handled in central memory, the conjugate gradient method is faster than Gaussian
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elimination (without a round-off error check) when the number of required iterations is

less than about N/6.;'

Table 3 lists the number of iterations and actual CPU ties using the conjugate

gradient method for the dual-surface magnetic-field equations, (23-24), applied to

plane-wave scattering from a perfectly conducting cube. 4 The plane wave was incident

broadside upon the cube of side length s, and the parameters (x and & in the dual-surface

magnetic-field integral equation (5a) were set equal to i and 3/16 k, respectively. The

initial value taken for the solution vector in the conjugate gradient algorithm was

zero, and the iterations were terminated when the ratio of the magnitude of the residual

vector to the magnitude of the source vector became less than 106 . Two-fold (xy)

symmetry of the cube was used to reduce the number of unknowns N in Table 3 by a factor

of 4, so that N equals 75(sA) 2 rather than 300(s/X) [see Eq. (25)] for N in terms of

the side-to-wavelength ratio (s/") of a cube with 25 patches per square wavelength, the

minimum number needed to achieve reasonable accuracy in the computed surface currents

and far fields.

Table 3 reveals that the number of required iterations depends mainly on the

side-to-wavelength ratio of the cube, and hardly at all on the number of patches per

square wavelength or, equivalently, hardly at all on the number of unknowns N for a

fixed s/X (assuming a reasonable minimum number of patches per square wavelength are

used). This independence of the number of conjugate gradient iterations on the cell

density has also been observed in the solution to two-dimensional scattering

problems. 32.33 Since the CPU time is proportional to the total number of patches, the CPU

time for the conjugate gradient solution is minimized by choosing the least number of

patches per square wavelength sufficient for the desired solution accuracy (approxi-

mately 25 patches per square wavelength in our case).

The number of iterations f,.5 required for convergence with the conjugate gradient

method as a function of the number of unknowns N, when using the minimum patch density

31 Wheeler Ill, J.E. and Wilton, D.R. (1988) Comparison of convergence rates of the
conjugate gradient method applied to various integral equation formulations, Digest of
the IEEE AP-S Symposium, Syracuse, NY, pp. 229-232.
32 Peterson, A.F. and Mittra, R. (1986) Convergence of the conjugate gradient method
when applied to matrix equations representing electromagnetic scattering problems, IEEE
Trans. Antennas Propagat. AP-34: 1447-1454.

Peterson, A.F., Smith, C.F., and Mittra, R. (1988) Eigenvalues of (he moment-method
matrix and their effect on the convergence of the conjugate gradient alrorithmi, IEEE
Ttan. Antennas Propagat. 36:1177- 1I 79.

25



of about 25 per square wavelength [N =75(s/) 21, appears from Table 3 to approach a

logarithmic function of N as N gets large; specifically

125 = 33 ln(.02N) = 66 ln(1.25 siX). (33)

Substituting 125 for I in Eq. (29) [divided by .75 since Eq. (29) gives a predicted

value that is about 75 percent of the actual CPU run time] gives

T -O 8.5 x 106 N2ln(.02N) = .l(s/X) 4 ln(s/X) (34)

minutes, as an estimate of the CPU time required to solve for scattering from large

cubes by the conjugate gradient method on our 32-bit, 1.3 megaflop Linpack-

performance-rated computer. (Interestingly, Catedra et al. 4 also found a CPU

time dependence proportional to the right side of Eq. (34) when solving 3-D scattering

problems using the conjugate gradient fast Fourier transform method applied to a volume

electric-field integral equation.) Because the logarithmic function is so slowly vary-

ing, Eq. (34) implies that the CPU time for solving full-bodied, 3-D, multi-wavelength

scatterers with well-behaved surface integral equations increases roughly as the fourth

power of the electrical size of the scatterer.

In Figure 4 the conjugate gradient and Gaussian elimination CPU times vs s/X for

scattering from the cube are plotted from Eqs. (34) and (30) [with N = 75(s/A) 2 1 by the

solid and dashed lines, respectively. Even though two-fold symmetry of the cube has

been utilized to reduce the number of unknowns N by the factor of 4, Figure 4 confirms

that Gaussian elimination CPU time becomes prohibitive for cubes larger than a few

wavelengths across, and that conjugate gradient iteration allows one to determine

scattering from considerably larger bodies.

34 Catedra, M.F., Gago, E., and Nuno, L. (1989) A numerical scheme to obtain the RCS
of three-dimensional bodies of resonant size using the conjugate gradient method and
the fast Fourier transform, IEEE Trans. Antennas and Propagat., 37: 528-537.
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Figure 4. CPU Time Versus Side-Length to Wavelength
Ratio for Dual-Surface Magnetic-Field Integral Equation
Solution for Scattering from a Perfectly Conducting 2
cube. Trhe number of unknowns N is given by 75 (s/X)2
since two-fold symmetry of the cube was used to reduce
the number of unknowns by a factor of four and the fixed
patch density Is 25 per square wavelength. The conjugate
gradient and Gaussian elimination times shown here would
he reduced[ by factors of about two and five, respectively.
if the coefficient matrices could be stored in central
memory rather than in direct access files, that is,
if the CPUJ time were computed from Eqs. (32) and (31)
instead of Eqs. (34) and (30).
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We emphasize that the formula (34) for the conjugate gradient CPU time as a

function of the number of unknowns and electrical size of the scatterer is an

approximation obtained by solving for scattering from the perfectly conducting cube

using the magnetic-field dual-surface integral equation. The formula holds for a patch

density of about 25 patches per square wavelength and a normalized residual of 106 .

Since the number of iterations is nearly independent of patch density, higher patch

densities will increase the CPU time proportionately. The CPU tine will decrease if the

normalized residual is chosen greater than 10-6; in particular, we found that the number

of iterations and thus CPU time halved when the normalized residual was increased from

10.6 to a value between 10'3 and 102 . As mentioned in Section 2, the number of

iterations and CPU time will also vary somewhat with the chosen values of the parameters

cx and 8 in the dual-surface integral equation, but this variation was not large for

values of a between ±1.5 i and 6 between X/8 and 3X/8.

We also applied the magnetic-field dual-surface integral equation to rectangular

boxes with side-length ratios that differed considerably from the value of unity for the

cube. For some rectangular boxes, the required number of iterations and CPU time were

appreciably larger than the values predicted by Eqs. (33) and (34) for a cube of the same

surface area, but T in Eq. (34) was never larger than 8.5 x 10 -6 N 5/2. Although the

incident plane wave always propagated normally to the xy face of the rectangular boxes

(broadside incidence), it is unlikely that the N-dependence of T.., in Eq. (34) would

change dramatically with the direction of the incident plane wave, because the

formulation took advantage of the xy symmetry that results from the broadside incidence

to reduce the number of unknowns N in the coefficient matrix by a factor of 4.

Finally, in hopes of reducing computer time further, we experimented with three

variations of the conventional conjugate gradient method, namely the "biconjugate"

gradient method, the "augmented" conjugate gradient method, and the "modified" conjugate

gradient method. 29 ' 5 We found that for the three dimensional, multi-wavelength problem

solved with surface integral equations, these three variations converged more slowly

than the conventional conjugate gradient method, regardless of the initial guess, or

whether they were used alone or in conjunction with the conventional conjugate gradient

method.
3

3 Sarkar, T.K. (1987) On the application of the generalized biconjugate gradient
method, J. Electromagnetic Waves and Applications, 1(3): 223-242.
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